
CollegeNET Series25 Help and Customer Resources

Copyright CollegeNET, Page 1
This content is intended only for licenced CollegeNET Series25 customers. Unauthorized use is prohibited.

WebServices API - Authentication

Cookies
Explanation for how to manage/handle Cookie elements to prevent from making new WSSESSIONID with each
request. (can be cited in each section after creating a session)

You need to capture the value supplied from the server of your initial GET /login.xml request and use that same value
for 'WSSESSIONID' for all subsequent requests of that same session. This is what our servers use to identify a specific
session.
Whether you store it locally in your running application or in a cache store elsewhere, the crucial point is that value
provided is used for all subsequent requests. If the 'WSESSIONID' cookie is not present or does not match the first
request you make against the API, the request will be treated as part of a new session and you will receive a "401
Unauthorized" response when trying to send your response body with POST /login.xml.

You might notice two other cookies: "BIGipServerp" and "Blaze". These are not added or used for application
functionality and you can safely ignore them.

In all of these examples, we will be using the following values for username and password.

username = 25livedemo25livedemo

password = CollegeNETTEST1CollegeNETTEST1

Basic Authentication
Basic authentication is a simple authentication scheme built into the HTTP protocol that can be handled by the
browser. The client sends HTTP requests with the Authorization header that contains the word Basic word
followed by a space and a base64-encoded string username:password . Because base64 is easily decoded, Basic
authentication should only be used together with other security mechanisms such as HTTPS/SSL. This type of auth
can also be used by scripts/code to negotiate authentication.

1. A client requests access to a protected resource.

2. The web server returns a dialog box that requests the user name and password.

3. The client submits the user name and password to the server.

4. The server authenticates the user in the specified realm and if successful, returns the requested resource.
a. The authenticationauthentication parameter 'realmrealm' is REQUIRED and must be supplied in the response back TO the server.REQUIRED and must be supplied in the response back TO the server.
b. The HTTP WWW-Authenticate response header defines the authentication method that should be used to
gain access to a resource.

GET to /run/login.xml to create WSESSIONIDGET to /run/login.xml to create WSESSIONID

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/WWW-Authenticate

CollegeNET Series25 Help and Customer Resources

Copyright CollegeNET, Page 2
This content is intended only for licenced CollegeNET Series25 customers. Unauthorized use is prohibited.

HEADER
WWW-Authenticate: Basic realm="R25 WebServices", charset="UTF-8"

HTTP
GET /r25ws/wrd/<instance>/run/login.xml HTTP/1.1
Host: webservices.collegenet.com
Authorization: Basic MjVsaXZlZGVtbzpDb2xsZWdlTkVUVEVTVDE= <-- this is the hashed value for the username and
password.
Cookie: Blaze=YNJkHw4b@s27bUhDOB5iTQAAFWI; WSSESSIONID=C02F3F9276F394FEF06EC8E1079748C6; BIGipSer
verp-java.webservices-web.collegenet.com=2250770186.36895.0000

Challenge Response Basic Authentication
For an LDAP server to properly check a supplied password, it must be received as clear-text. There is not a
mechanism setup to un-digest a password supplied from using the HTTP Digest process, therefore, the HTTP Basic
process is used when LDAP is enabled. If security concerns exist, make sure to use an SSL enabled port for the
connection between the WebServices/25Live application server and your contact directory. This is typically port 636.

When using login.xml with LDAP authentication, a hybrid challenge/response-basic method is used. Instead of a
challenge string, Web Services responds with a template for Basic authentication:

1. Make a GET GET request to login.xmllogin.xml

login.xml GET responselogin.xml GET response
<?xml version="1.0"?>
<r25:login_challenge pubdate="2006-03-10T11:02:00" xmlns:r25="http://www.collegenet.com/r25">
 <r25:login>
 <r25:challenge>Basic realm="R25 WebServices"</r25:challenge>
 <r25:username/>
 <r25:response/>
 </r25:login>
</r25:login_challenge>

2. Construct the response, clear out the challenge, and post your response. Formulate the response as you would with
HTTP Basic authentication. In the response tag, put Basic in front of the response as below.

3.

login.xml POST request payloadlogin.xml POST request payload
<?xml version="1.0"?>
<r25:login_challenge pubdate="2006-03-10T14:10:24" xmlns:r25="http://www.collegenet.com/r25">
 <r25:login>
 <r25:challenge />
 <r25:username>25livedemo</r25:username>
 <r25:response>Basic bmF0aGFuOm5hdGhhblBVRkYAAAA</r25:response>
 </r25:login>
</r25:login_challenge>

CollegeNET Series25 Help and Customer Resources

Copyright CollegeNET, Page 3
This content is intended only for licenced CollegeNET Series25 customers. Unauthorized use is prohibited.

4.

login.xml POST response payloadlogin.xml POST response payload

<?xml version="1.0"?>
<r25:login_response xmlns:r25="http://www.collegenet.com/r25" xmlns:xl="http://www.w3.org/1999/xlink" pubdate
="2011-12-01T13:58:26-08:00">
 <r25:login>
 <r25:message>Login successful</r25:message>
 <r25:success>T</r25:success>
 <r25:user_type>r25</r25:user_type>
 <r25:user_id>5486</r25:user_id>
 <r25:username>r25demo</r25:username>
 <r25:contact_name>Demo, R25</r25:contact_name>
 <r25:security_group_id>31</r25:security_group_id>
 <r25:security_group_name>Users</r25:security_group_name>
 <r25:login_url></r25:login_url>
 <r25:logout_url>https://r25.school.edu/25live/data/run/logout.xml</r25:logout_url>
 </r25:login>
</r25:login_response>

Challenge Response Authentication

Make a GETGET request to login.xml. login.xml. You can choose to avoid HTTP authentication all together, if you use the challenge
response system presented by the login.xml service. The process to use this is outlined below:

1. GETGET https://webservices.collegenet.com/r25ws/wrd/<instance>/run/login.xml

login.xml GET request payloadlogin.xml GET request payload
<?xml version="1.0" encoding="utf-8"?>
<r25:login_challenge xmlns:r25="http://www.collegenet.com/r25" xmlns:xl="http://www.w3.org/1999/xlink" pubdate
="2021-06-15T14:24:15-07:00" engine="sws">
 <r25:login>
 <r25:challenge>f5eea272958b21d26a3bf3a649bd31b1</r25:challenge>
 <r25:username/>
 <r25:response/>
 </r25:login>
</r25:login_challenge>

2. Calculate the "response string" following this formula: MD5(MD5(password):<r25:challenge value>)MD5(MD5(password):<r25:challenge value>)

Create an MD5 hash of the user's password.
Ex: CollegeNETTEST1=8605492c6d7818728ad730c3834ba04d

Append a colon and the challenge string from the initial GET of login.xml to this password hash.
Ex: 8605492c6d7818728ad730c3834ba04d:ecb4a7f2a7c10ac2411c7db4d557ecc6

Generate anotheranother MD5 hash of the string created in in part b.
Ex: 1fb6b3c34f9a590f9555a51f0ed9e3ab

CollegeNET Series25 Help and Customer Resources

Copyright CollegeNET, Page 4
This content is intended only for licenced CollegeNET Series25 customers. Unauthorized use is prohibited.

Use value from part c in the <r25:response> line of the XML body.

3. POST POST https://webservices.collegenet.com/r25ws/wrd/<instance>/run/login.xml with the payload containing the
<r25:response> to login.xml

login.xml POST requestlogin.xml POST request
<?xml version="1.0" encoding="utf-8"?>
<r25:login_challenge xmlns:r25="http://www.collegenet.com/r25" xmlns:xl="http://www.w3.org/1999/xlink" pubdate
="2021-06-15T14:24:15-07:00" engine="sws">
 <r25:login>
 <r25:challenge />
 <r25:username>25livedemo</r25:username>
 <r25:response>b4fe7f5591a4cd287b4500eae887ebf1</r25:response>
 </r25:login>
</r25:login_challenge>

4. Successful response from login.xml

login.xml POST responselogin.xml POST response
<?xml version="1.0" encoding="utf-8"?>
<r25:login_response xmlns:r25="http://www.collegenet.com/r25" xmlns:xl="http://www.w3.org/1999/xlink" pubdate
="2021-06-15T14:26:43-07:00" engine="sws">
 <r25:login>
 <r25:message>Login successful</r25:message>
 <r25:success>T</r25:success>
 <r25:user_type>r25</r25:user_type>
 <r25:user_id>3143</r25:user_id>
 <r25:username>25livedemo</r25:username>
 <r25:contact_name>Demo, 25live</r25:contact_name>
 <r25:security_group_id>2</r25:security_group_id>
 <r25:security_group_name>Academics - Advanced (2)</r25:security_group_name>
 <r25:login_url></r25:login_url>
 <r25:logout_url>https://webservices.collegenet.com/r25ws/wrd/<instance>/run/logout.xml</r25:logout_url>
 </r25:login>
</r25:login_response>

Digest Authentication
Digest can be handled automatically by the browser . This type of auth can also be used by scripts/code to negotiate
authentication. When using digest, there is a sequence of communication between the browser and the server, where
the server creates a hash that the browser must respond with (all happens in a single "request").

1. A client requests access to a protected resource.

2. The web server returns a dialog box that requests the user name and password.

3. The client submits the user name and password to the server.

4. The server authenticates the user in the specified realm and if successful, returns the requested resource.
a. The authenticationauthentication parameter 'realmrealm' is REQUIRED and must be supplied in the response back TO the server.REQUIRED and must be supplied in the response back TO the server.
b. The HTTP WWW-Authenticate response header defines the authentication method that should be used to

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/WWW-Authenticate

CollegeNET Series25 Help and Customer Resources

Copyright CollegeNET, Page 5
This content is intended only for licenced CollegeNET Series25 customers. Unauthorized use is prohibited.

gain access to a resource.

The server responds with:

Here's an example of the authorization header on a request after digest authorization has taken place:Here's an example of the authorization header on a request after digest authorization has taken place:
HEADER
Authorization: Digest username="25livedemo", realm="R25R25 WebServices Web Services", nonce="fd2031312e8c
8285a0aaf47d29e48", uri="/r25/servlet/wrd/run/login.xml", algorithm=MD5,
 response="e4ba450ac6e868499cd72b231972253c", qop="auth", nc=00000001,
 cnonce="682d7970a88181deed251a1fded072ea"

HTTP
GET /r25ws/wrd/<instance>/run/login.xml HTTP/1.1
Host: webservices.collegenet.com
Authorization: Digest username="25livedemo", realm="R25 WebServices", nonce="MTYyMzk0NDA2MTkzMTo0NjQyM
TIzMzBiYjJkNTVkZGJhMTdkZDViZGRjMWM4NQ==", uri="/25live/data/<instance>/run/login.xml", response="1f7862cc
00b65940025d0ec18837f4fd", qop=auth, nc=00000002, cnonce="30be57b0c1ef5047"
Cookie: Blaze=YNJp0aDPxw-u815AjWF2vgAALNM; WSSESSIONID=0EAFDA8B3070F8F1DDB2FAB7753BC6C2; BIGipSer
verp-java.webservices-web.collegenet.com=2249459466.36895.0000

The server will generate a unique nonce value for each session.

The client generates a response string to prove that they know a password. The server will be able to compare this
string against a version it can generate from the assumed same information.

ResponseResponse = HH(A1A1:nonce:nc:cnonce:qop:A2A2)
A1A1 = HH(username:realm:password)
A2A2 = HH(http-method:uri)

Parameter Translation
HH = MD5MD5

usernameusername = R25 username

realmrealm = Realm supplied by Web Server (R25 WebServices)

passwordpassword = R25 password

http-methodhttp-method = One of GET, POST, PUT or DELETE

uriuri = Full path to the requested resource

noncenonce = Nonce value from the server

ncnc = Nonce count, or number of requests to the server (in hex)

cnoncecnonce = Client generated nonce

qopqop = Quality of protection (auth in R25 WebServices)

It might be helpful to use a tool such as POSTMAN and a custom script to capture the parameter variables being used
on the GET Call to run/login.xml so that it's easier to populate the POSTPOST to login.xml, after that.

Example:

CollegeNET Series25 Help and Customer Resources

Copyright CollegeNET, Page 6
This content is intended only for licenced CollegeNET Series25 customers. Unauthorized use is prohibited.

Cleaning up your session
After your session has been marked as valid, you will not need to provide credentials again. To cleanup your session,
just make a GETGET request to logout.xmllogout.xml
GETGET https://webservices.collegenet.com/r25ws/wrd/<instance>/run/logout.xml

logout.xml GET responselogout.xml GET response
<?xml version="1.0" encoding="utf-8"?>
<r25:goodbye xmlns:r25="http://www.collegenet.com/r25" xmlns:xl="http://www.w3.org/1999/xlink" engine="sws">
25livedemo</r25:goodbye>

