
CollegeNET Series25 Help and Customer Resources

Copyright CollegeNET, Page 1
This content is intended only for licenced CollegeNET Series25 customers. Unauthorized use is prohibited.

Using the SeriesQL Search Syntax

Security Note

What you can see and do in this application depends on the security permissions associated with your 25Live
user account. If you can't access something you think you should be able to, contact your 25Live
Administrator.

SeriesQL (Series25 Query Language) is the internal search syntax of 25Live. Used from the 25Live Quick Search bar,
SeriesQL allows you to ask the system a question in the form of fields, operators, and values then receive a response,
such as a list of events, locations, or resources that matches your query.

The SeriesQL Syntax
The built-in query language in 25Live is made up of a sequence of questions. A SeriesQL query utilizes the following
parts.

Terms: Terms: A term is the first part of a statement and indicates the type of data you are want to query. For example,
"name" is a term that indicates you want to query by name. For a list of all available terms, including descriptions,
available operators, and example queries, see the following pages:

Event Query Terms

Location Query Terms

Resource Query Terms

Organization Query Terms

Task Query Terms

Operators: Operators: An operator follows the term and indicates how you want to compare the term to your results. A
certain term only supports certain operators. Examples of operators are =, contains, startsWith, endsWith,
between, in, notIn, all. After you enter a term, a suggestion drop-down displays the supported operators for that
term for you to select from.

The inin, notInnotIn, allall operators are list operators that can accept a list of values, with each value contained
within single-quotes and the whole list surrounded by parentheses. For example:

::state in ('Tentative', 'Confirmed')
...will return events with a state matching any of those in the value list, in this case, Tentative or Confirmed.

The notInnotIn operator is the opposite of the in operator. It will return results that do not match any of the
values in the values list.

Note: The “notIn” operator is not a valid option for folders when performing event queries.

The allall operator will return results that match all the values in the list. For example, events can have many
categories, but you might want to get events where each event has certain categories:

::category all ('Recital', 'Over 100 Guests', 'Wind Instruments')
The above query will return events that are in all three categories: "Recital", "Over 100 Guests", and "Wind
Instruments".

http://knowledge25.knowledgeowl.com/help/event-query-terms
http://knowledge25.knowledgeowl.com/help/location-query-terms
http://knowledge25.knowledgeowl.com/help/resource-query-terms
http://knowledge25.knowledgeowl.com/help/organization-query-terms
http://knowledge25.knowledgeowl.com/help/task-query-terms

CollegeNET Series25 Help and Customer Resources

Copyright CollegeNET, Page 2
This content is intended only for licenced CollegeNET Series25 customers. Unauthorized use is prohibited.

Values: Values: A value follows an operator and is either a string (enclosed in single-quotes), a date (yyyy-mm-dd format
in single-quotes), or a number. The value works with the term and operator to limit results. For example,
'Tentative', 'Confirmed', 'Recital', 'Over 100 Guests', and 'Wind Instruments' are string values. An integer value is a
number like 1, 2, 3, etc. A date value needs special formatting as described below.

For even more information, please see the Additional Detail section below.

You Don't Have to Memorize the Syntax

25Live has built-in help for entering SeriesQL queries. Simply start typing and suggestions will be displayed.
After typing or choosing a field item, operator suggestions will display. After typing a value, conjunction
suggestions to connect your queries will display.

To Create a SeriesQL QueryTo Create a SeriesQL Query
First, navigate to the Search section by using the Go to Search button in the top navigation bar on every page of 25Live.
There is also a Search link in the More menu in the top navigation. The Search section defaults to the Quick Search
mode.

Tip: Please Review Examples

This section provides general information on the steps required to create a query using SeriesQL and
examples. Before you begin creating your own queries, you will benefit from reading through all of the
following details and examples to learn about all query types and how to best use them to get the
information you want. See examples below.

1. Choose the Search Type
Using the dropdown menu, you can choose to search for Events, Locations, Organizations, Resources, or Tasks.

2. Be Sure the Search Type is Set to Quick Search
Use the slider control to be sure that you are in Quick Search mode.

Image: Use the drop-down menu to choose a search area.

http://knowledge25.knowledgeowl.com/help/using-the-top-navigation-bar

CollegeNET Series25 Help and Customer Resources

Copyright CollegeNET, Page 3
This content is intended only for licenced CollegeNET Series25 customers. Unauthorized use is prohibited.

3. Start Your SeriesQL Query With a Double Colon
Type "::" to start your query statement. You will see a list of fields to choose from.

4. Enter or Choose a Term, an Operator, and Value
After entering or choosing a term, SeriesQL will only present you with a list of operators that are appropriate for the
term you added. Type or choose the operator you need, then type the value you are looking for. Values must be
surrounded by single quotes.

Image: Use the Quick Search
mode to enter SeriesQL queries.

Image: SeriesQL will automatically suggest fields and operators to make constructing
your query easier.

CollegeNET Series25 Help and Customer Resources

Copyright CollegeNET, Page 4
This content is intended only for licenced CollegeNET Series25 customers. Unauthorized use is prohibited.

Tip: Date Formats

If you are searching for a date value, it must also be enclosed in single quotation marks, but it must also
follow a specific format, separated by dashes.

I want to find an event with occurrence date(s) between 11/01/2024 and 12/21/2024.

Example: ::occDate between '2024-11-01' and '2024-12-21'

If you are adding a time to your date, then you must include it within the single quotations, use a T
separator right after the date, and use 24-hour format.

I want to find an event with occurrence date(s) between 11/01/2024 at 6:00 am and 12/21/2024 at 5:00
pm.

Example: ::occDate between '2024-11-01T06:00:00' and '2024-12-21T17:00:00'

Read additional detail about date values below.

5. Optionally Enter or Choose a Conjunction to Add Additional Criteria
You have the option to add additional criteria by entering or choosing a conjunction (i.e. and, or), or you may run the
search.

Image: Enter or choose the query parts and additional criteria, then run the search.

CollegeNET Series25 Help and Customer Resources

Copyright CollegeNET, Page 5
This content is intended only for licenced CollegeNET Series25 customers. Unauthorized use is prohibited.

6. Run the Search
Use the SearchSearch button or your Enter or Return key to view your search results.

Additional Detail: Anatomy of a SeriesQL QueryAdditional Detail: Anatomy of a SeriesQL Query
A query is a series of statements joined together by 'and' and 'or' operators. A statement consists of a termterm, an
operatoroperator, and a valuevalue oror list of valueslist of values for certain operators (in, notIn, all). When executed, the query returns a list of
matching results. Each item returned in the results is true with respect to the query. Let's take a look at a SeriesQL
example for events.

::name contains 'audition'

This query asks for all events containing the word "audition". The double colons ("::") tell the system that you are
making a SeriesQL query and not just a keyword search. The word "name" is a term, and since this is an event search, it
means you are asking a question about event names. The word "contains" is an operator and means you want to search
for events with names that contain some value. The value 'audition' is within single-quotes, indicating it is a value and
that you want events with names containing the word "audition".

You can compose queries by adding additional statements. Here is an example of a multi-statement query:
::(name contains 'checkers' or name contains 'chess') and missingLocationAssn between today and start + 1

This query asks for all events that contain either the word "checkers" or the word "chess" and also have a missing
location assignment between today and tomorrow. There are three statements in this query:

1. name contains 'checkers'

2. name contains 'chess'

3. missingLocationAssn between today and start + 1

Image: This query is composed of two statements joined by "and." It finds all events that begin with "f" and are in a "Confirmed" event
state.

http://knowledge25.knowledgeowl.com/help/working-with-search-results

CollegeNET Series25 Help and Customer Resources

Copyright CollegeNET, Page 6
This content is intended only for licenced CollegeNET Series25 customers. Unauthorized use is prohibited.

The first two statements are grouped together with parentheses to protect against the 'and' operator over-selecting
results (see below). This grouping ensures that the last statement is applied after the first two statements have been
checked because we want the missing location assignments from today and tomorrow to apply to both checkers
events and chess events. The "or" operator joins the checkers and chess statements so we'll get events with names
that have the words 'chess' or 'checkers' in them. The last statement limits the checkers/chess events we get to just
those that have missing location assignments between today and tomorrow. Note that for date terms, you can use the
special "today" value to refer to today's date. SeriesQL also supports date math, so you can add or subtract from
"today" in your queries.

SeriesQL Examples

Example 1: Simple Single Criteria
Here the user is creating a simple one-statement query to find all events named "foot".

Example 2: Choosing Multiple Items in Single Criteria
Here the user is creating an event query for events matching all specified categories. Note that after the user
chooses "category" and "all" they can select the categories they want and then click Done to insert them into the
query.

Animation: Search by name by typing: "::name", and making
additional selections when prompted.

CollegeNET Series25 Help and Customer Resources

Copyright CollegeNET, Page 7
This content is intended only for licenced CollegeNET Series25 customers. Unauthorized use is prohibited.

Example 3: Multiple Option Choices in Criteria
Here the user is creating an event query for events that are in at least one of the listed locations. Note how the
user can search locations dynamically by typing, using arrows to navigate to locations, entering to select them,
and finally clicking Done to insert them into the query.

Example 4: Searching By Location PreferenceExample 4: Searching By Location Preference
A user can also search by space (location) preference using

To begin, use the syntax, ::locationPreferences in ('search term') . Then add details about a location.

Additional Detail: More About ValuesAdditional Detail: More About Values

Animation: Search by category by typing "::category", and making
additional selections when prompted.

Animation: Search by location by typing: "::location", and
making additional selections when prompted.

Image: Users can search by location preference.

CollegeNET Series25 Help and Customer Resources

Copyright CollegeNET, Page 8
This content is intended only for licenced CollegeNET Series25 customers. Unauthorized use is prohibited.

Date ValuesDate Values
Date values in SeriesQL need to be entered in yyyy-mm-dd format. This means 4 digit year, two-digit month (01, 02,
..., 10, 11, 12), and two-digit day (01, 02, ..., 10, etc). To specify date and time, simply enter a date in the correct format,
add an uppercase T, and enter the time in hh:mm format, which means two-digit hour in 24-hour format (00, 01, ...,
11, 12, 13, 14, 15, ..., 23), and two-digit minute (00, 01, ..., 59). For midnight, use 23:59.

You may also use the special value, todaytoday, to indicate today's date when using a range.

Dates also support arithmetic operations so you can add and subtract from them. For example, today - 1 is yesterday
and today + 1 is tomorrow. Similarly, '2024-05-04' - 4 is '2024-04-30'.

Date Examples:Date Examples:
::earliestStart = '2024-05-04'

::earliestStart = '2024-05-04' - 4

Date/Time Examples:Date/Time Examples:
::occDate between '2024-04-19T00:00' and '2024-04-19T14:00'

::occDate between '2024-04-19T00:00' and today

Embedded ValuesEmbedded Values
An embedded value is a value the system inserts into the beginning of an 'in' clause because it needs it. There can
only be one embedded value in an 'in' clause and it is always at the beginning. The actual value can be ignored
because the system sets it for its own needs to execute or switch to design view properly. Different terms can have
different embedded values. Only two terms have embedded values:

1. contact → embedded value is a contact role

2. relationship → embedded value is a relationship type

 Examples include:
::contact in ('role:-1', 'Alice')

In the event query example above, 'role:-1' is an embedded value that indicates 'Requestor'. You can see this by
switching to design view and seeing that Requestor is selected. If you know the embedded value you want, you can
edit the SeriesQL directly, For example, you could change -1 to -3, which would change the contact type in the query
from Requestor to Instructor.

::relationship in ('relationship:4', 'Conference Room A', 'Conference Room B')

In the location query example above, the query is asking for locations that are related, by relationship type id 4, to
the selected locations: 'Conference Room A' and 'Conference Room B'. In this case, relationship type id 4
corresponds to 'Also Assign'. You can easily see what each embedded value corresponds to by switching to the
design view.

When selecting actual values (contacts, locations, or resources) for a term with an embedded value, search for and
select your contacts or locations or resources first, as if the embedded value doesn't exist. After you select values in
the suggestion drop-down, select the single contact role or relationship type you want and click Done. The system
will fill the 'in' clause for you with the selected embedded value as well as your selected actual values. Below is a
visual example – note that the user just searches in the text area, selects what they want, selects the embedded
value they want, and clicks Done.

CollegeNET Series25 Help and Customer Resources

Copyright CollegeNET, Page 9
This content is intended only for licenced CollegeNET Series25 customers. Unauthorized use is prohibited.

Custom Attribute ValueCustom Attribute Value
Custom attributes are special in that there are many different types of them and, as a result, they can take on
different values depending on the type. When you search by custom attribute, you are searching for results that
have the selected custom attribute and match any value you have specified. In SeriesQL, this is represented as a list
of values inside an "in" operator. For most custom attributes, you have to specify a comparison operator, also known
as a relationship in this context, like "starts with" or "is earlier than or equal to" and a value, like "computational
theory" or "2024-01-01". Note that when you enter a value via the suggestion drop-down, you don't need to include
quotes because the system does that for you after you click the "Done" button. Most custom attributes need values
to form a search, but a few don't. For example, boolean (true/false) custom attributes don't require a value. Similarly,
if your comparison operator is "exists" or "does not exist", you are asking for results where the selected custom
attribute exists (or does not exist), so no value is needed.

Examples of custom attribute event queries:
::custAtrb in ('Cancel if Bad Weather?', 'is True', 'B')
::custAtrb in ('Course Section', 'starts with', 'S', 'computational theory')
::custAtrb in ('Date Time', 'is earlier than or equal to', 'E', '2020-12-01')
::custAtrb in ('Amount Received', 'exists', 'F')

Notice in the example queries above that each "in" clause has a single character value – 'B', 'S', 'E', and 'F' in these
examples. This value represents the type of custom attribute the system will use when executing the query, as
explained below.

B: BooleanBoolean --> no value needed, the comparison operator (relationship) defines the value for you, such as 'is True'
or 'is False'

I: ImageImage --> no value needed, only exists / does not exist

Animation: Search by relationship by typing "::relationship", and making additional selections
when prompted.

CollegeNET Series25 Help and Customer Resources

Copyright CollegeNET, Page 10
This content is intended only for licenced CollegeNET Series25 customers. Unauthorized use is prohibited.

X: Large TextLarge Text --> no value needed, only exists / does not exist

2: OrganizationOrganization --> needs a value if using the 'is equal to' comparison operator. To use, search for and select an
organization from the suggestion drop-down

3: ContactContact --> needs a value if using the 'is equal to' comparison operator. To use, search for and select a contact
from the suggestion drop-down.

4: LocationLocation --> needs a value if using the 'is equal to' comparison operator. To use, search for and select a location
from the suggestion drop-down.

6: ResourceResource --> needs a value if using the 'is equal to' comparison operator. To use, search for and select a
resource from the suggestion drop-down.

R: File ReferenceFile Reference --> needs a value if using the 'contains', 'is equal to', 'starts with' comparison operators

S: StringString --> needs a value if using the 'contains', 'is equal to', 'starts with' comparison operators

D: DateDate --> needs a value if using the 'is equal to', 'is earlier than or equal to', 'is later than or equal to' comparison
operators

E: DatetimeDatetime --> needs a value if using the 'is equal to', 'is earlier than or equal to', 'is later than or equal to'
comparison operators

T: TimeTime --> needs a value if using the 'is equal to', 'is earlier than or equal to', 'is later than or equal to' comparison
operators

N: IntegerInteger --> needs a value if using the 'is equal to', 'is less than or equal to', 'is greater than or equal to'
comparison operators

F: FloatFloat --> needs a value if using the 'is equal to', 'is less than or equal to', 'is greater than or equal to' comparison
operators

Multiple Suggestion Searches for 'in' ValuesMultiple Suggestion Searches for 'in' Values
Some terms require you to search for values, like the location term in an event search, because there are so many
values that the system can't list them all for you in the browser. In other cases, you may want values that are so
different that you need to find them separately to include them in your query. For example, say you want all events
that are either in a certain conference room or in the gym. To do this, you would search for conference rooms and
select the one you want in your query via the suggestion drop-down, and click Done. Next, you would click at the end
of the last value inserted (between the last single-quote and end-parentheses), add a comma and a starting single-
quote, search for and select the gym via the suggestion drop-down, and click Done to include it in your query.

CollegeNET Series25 Help and Customer Resources

Copyright CollegeNET, Page 11
This content is intended only for licenced CollegeNET Series25 customers. Unauthorized use is prohibited.

Animation: Search by space by typing "::space", and making additional selections when
prompted.

